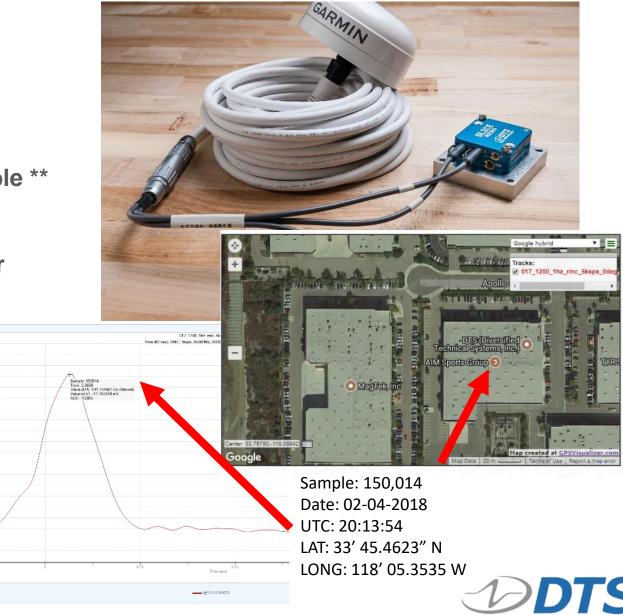
DTS GPS and SLICE

17 July 2018 Ariel Muckenhirn Mike Beckage

SLICE GPS Accessory Kit – Why GPS?

- Precision Time and Location
 - Alignment of events to real world locations
 - Time synchronization across multiple systems
- Who's Interested?
 - Bicycle Manufacturer: Materials and Design Verification
 - Characterize stresses/strains from a known track environment
 - Rail Company: Catastrophic Coupler Failure
 - Locate failure point(s) along 1,000+ miles of track
 - Numerous Aerospace Companies
 - Characterization of blast events from multiple locations
 - Identify timing and location (altitude/velocity) of specific events during parachute deployment


SLICE GPS Accessory Kit – What It Does

GPS Location, Velocity and Time

Accessory for SLICE DAS

- NANO, MICRO, IP68 and SLICE PRO
- ± 1 μs fundamental timing accuracy possible **
- Standard NMEA format for GPS data
- Rugged mounting options for GPS receiver
- 12VDC operation
- Application Examples
 - Automotive / Bicycle
 - Railroad
 - Aerospace

** DAS timing resolution depends on sampling rate

SLICE GPS Accessory Kit – How It Works

- Capture two important GPS Signals along with sensor data
 - IPPS: Precision time pulse
 - NMEA: Date and time, locations, velocity, etc.
- Post-Processing
 - Software Utility extracts location and time information from channel data
- Visualization using 3rd party tools
 - DIADem, MATLAB, Google Maps, etc.

SLICE GPS Accessory Kit – What's Included

- Garmin 19X GPS Receiver and mounting kit
- Accessory Cables
 - GPS Configuration Cable
 - GPS Break-out Cable
 - (2) Power Option Cables
 - Pigtail and Molex
- User-Modifiable Software
 - Source Code, Executable, and Documentation
 - Windows Executable (.exe), MATLAB
 Source Code, C# Project Solution (.sln) and
 Source Code
- User's Manual and Test Examples

Technical Overview

Readily available off-the-shelf GPS devices provide:

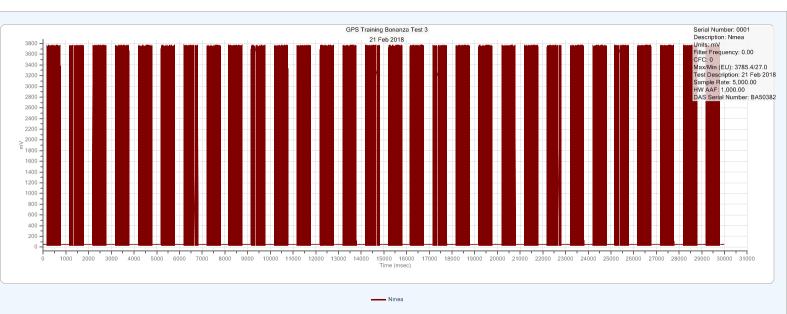
- NMEA serial data stream that contains location and time of day information.
- 1 PPS (pulse per second) digital data. The "edge" of this square wave signal provides very precise timing information.
- NMEA + 1PPP data provide complete location and timing information.

Recording on SLICE

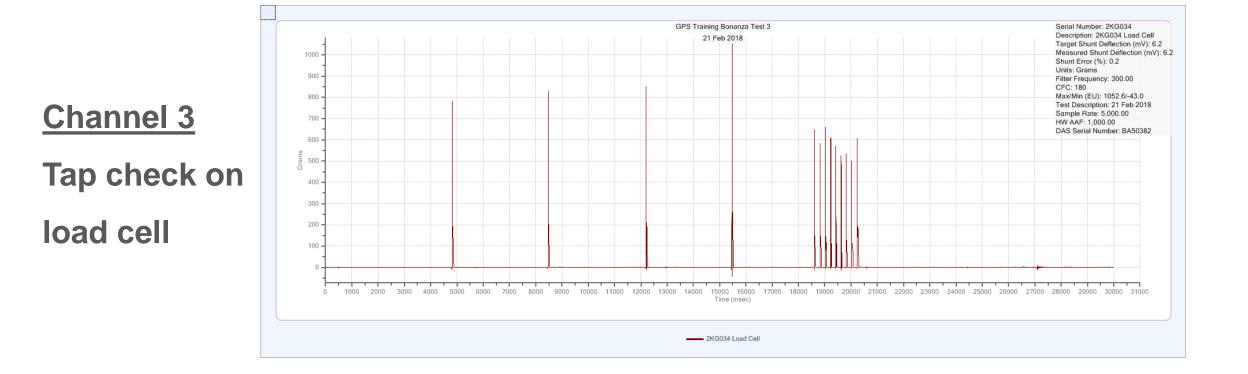
- NMEA and 1PPS "digital" signals can be recorded on SLICE analog channels with the proper connection cables and sensor settings.
- Sampling rate must be at least 5k sps (samples per second).
- Recorded data are post-processed to create a simple CSV file with location and time of day correlated to specific samples numbers in SLICE data.
- User's Manual and MATLAB utility available on the DTS Help Center.

Recording

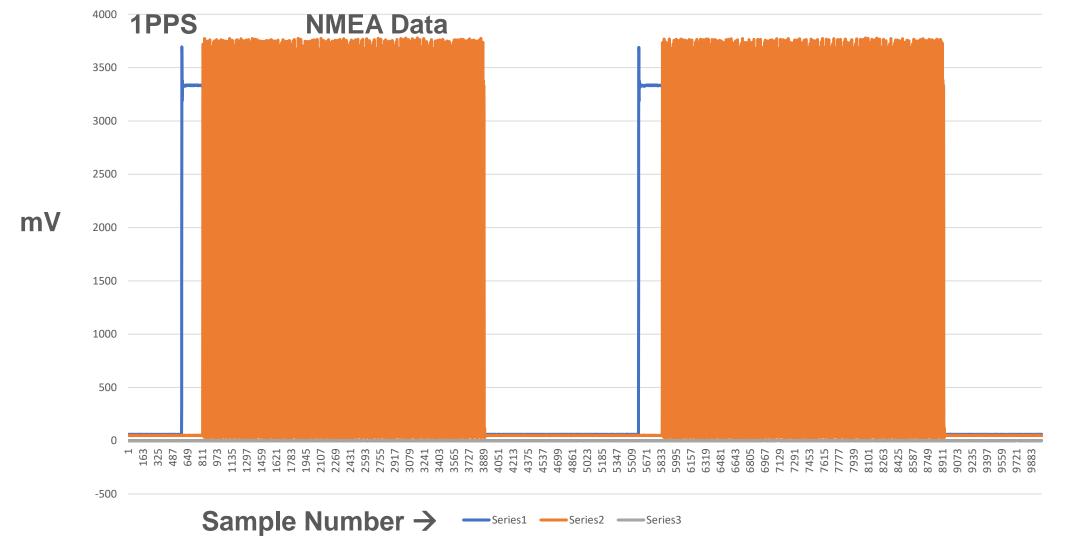

- Connect GPS signals to SLICE by following instructions in User's Manual.
- Connect sensors to other channels on SLICE Stack(s).
- Record data at 5k sps or higher for any length desired.
- Use provided utility to generate location, date and time CSV file.
- Correlate location/time data with SLICE data as needed.


Sample Data – Recorded at 5k sps for 30 seconds

Channel 1

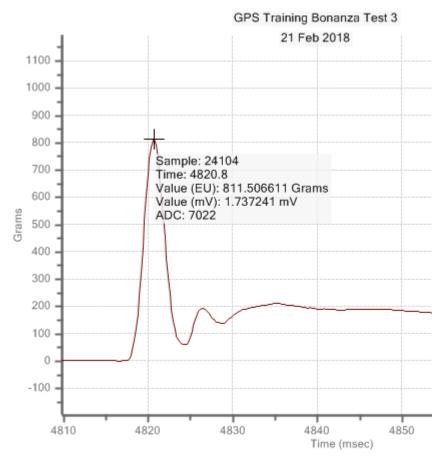

1 PPS Data

<u>Channel 2</u> NEMA Data Packets

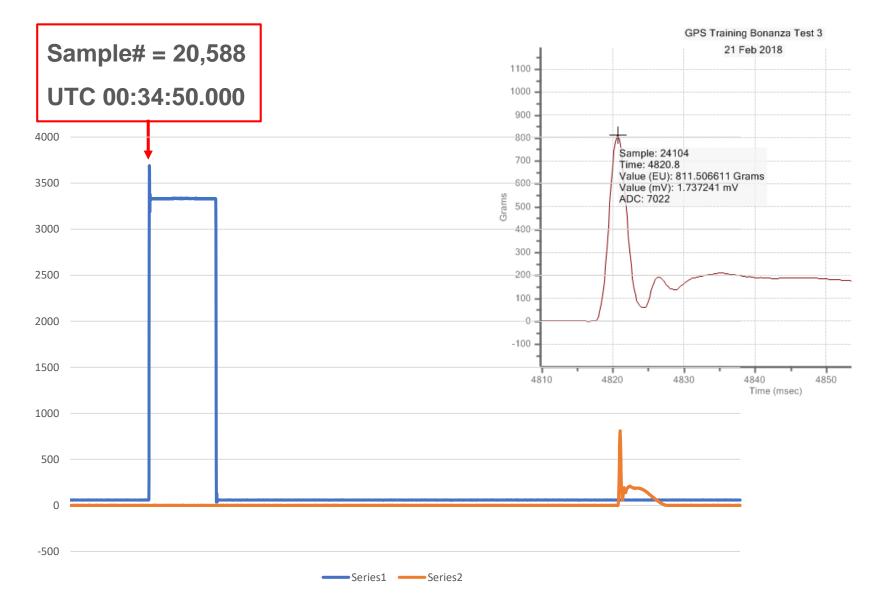

Sample Data – Recorded at 5k sps for 30 seconds

Sample Data (CSV) – Recorded at 5k sps for 30 seconds

First 2 seconds of SLICE data showing 1PPS and NEMA packets plotted versus sample number



Sample Data – MATLAB Conversion Utility


Generates a CSV that correlates data sample numbers in SLICE Data to UTC

date/time and location.

		A	В	С	D	E	F	G	Н	I	J	K	L	М	N
	1	sample#	hour	minute	second	day	month	year	lat deg	lat min	lat hemisp	long deg	long min	long hemi	sphere
	2	588	0	34	46	22	2	18	33	45.4768	N	118	5.3322	W	
3	3	5588	0	34	47	22	2	18	33	45.4769	N	118	5.3321	W	
	4	10588	0	34	48	22	2	18	33	45.4769	N	118	5.3321	W	
	5	15588	0	34	49	22	2	18	33	45.4769	N	118	5.3321	W	
	6	20588) 0	34	50	22	2	18	33	45.4769	N	118	5.332	W	
	7	25588	0	34	51	22	2	18	33	45.4769	N	118	5.332	W	
	8	30588	0	34	52	22	2	18	33	45.477	N	118	5.332	W	
	9	35588	0	34	53	22	2	18	33	45.477	Ν	118	5.332	W	
	10	40588	0	34	54	22	2	18	33	45.477	Ν	118	5.332	W	
	11	45588	0	34	55	22	2	18	33	45.477	Ν	118	5.3319	W	
	12	50588	0	34	56	22	2	18	33	45.4771	N	118	5.3319	W	
	13	55588	0	34	57	22	2	18	33	45.4771	N	118	5.3319	W	
	14	60588	0	34	58	22	2	18	33	45.4771	N	118	5.3319	W	
	15	65588	0	34	59	22	2	18	33	45.4772	N	118	5.3318	W	
	16	70588	0	35	0	22	2	18	33	45.4772	N	118	5.3318	W	
	17	75588	0	35	1	22	2	18	33	45.4772	N	118	5.3318	W	
	18	80588	0	35	2	22	2	18	33	45.4772	N	118	5.3318	W	
	19	85588	0	35	3	22	2	18	33	45.4773	N	118	5.3318	W	
	20	90588	0	35	4	22	2	18	33	45.4773	N	118	5.3318	W	
	21	95588	0	35	5	22	2	18	33	45.4774	N	118	5.3318	W	
	22	100588	0	35	6	22	2	18	33	45.4774	Ν	118	5.3318	W	
	23	105588	0	35	7	22	2	18	33	45.4774	N	118	5.3318	W	
	24	110588	0	35	8	22	2	18	33	45.4775	Ν	118	5.3318	W	
	25	115588	0	35	9	22	2	18	33	45.4775	Ν	118	5.3318	W	
	26	120588	0	35	10	22	2	18	33	45.4776	N	118	5.3318	W	
	27	125588	0	35	11	22	2	18	33	45.4776	Ν	118	5.3318	W	
	28	130588	0	35	12	22	2	18	33	45.4777	N	118	5.3317	W	
	29	135588	0	35	13	22	2	18	33	45.4777	N	118	5.3317	W	
	30	140588	0	35	14	22	2	18	33	45.4778	N	118	5.3317	W	

Sample Data – Correlating data/time samples

THANK YOU

