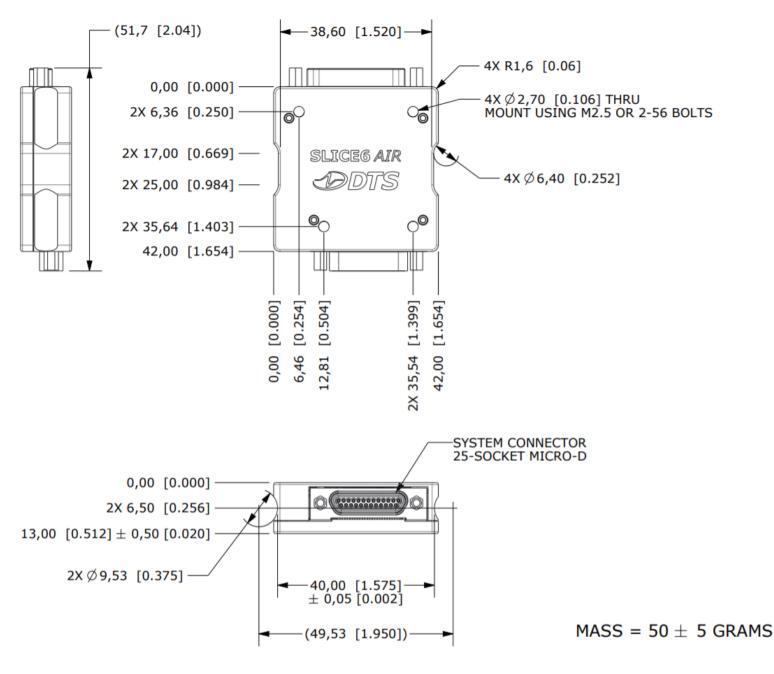
DTSSLICE6 AIR Sensor and System Connections

05 May 2021 Mike Beckage


SLICE6 AIR

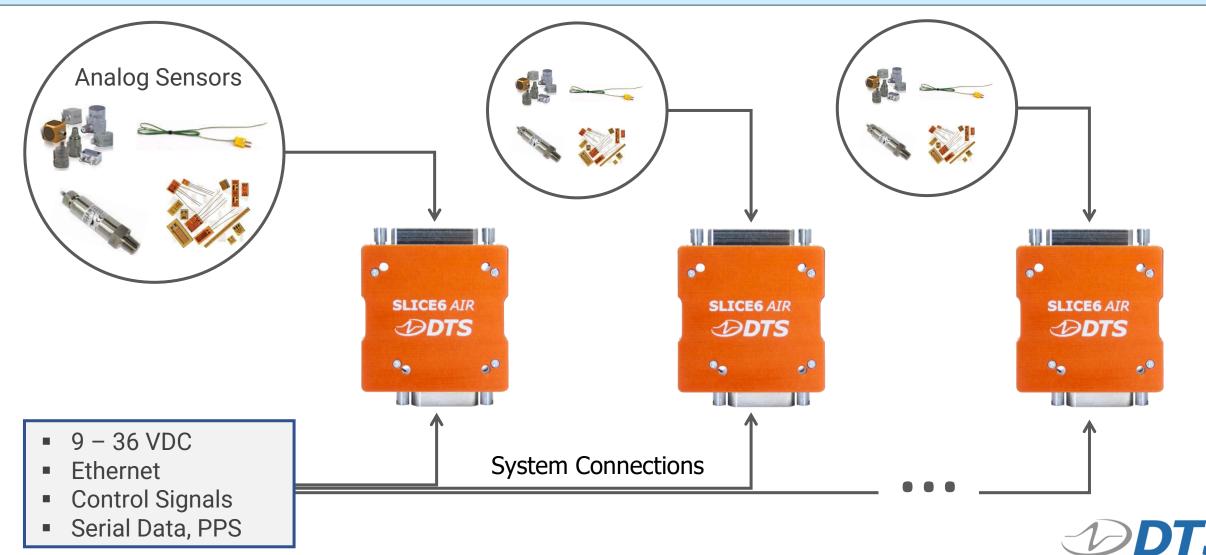
- Ethernet-based data acquisition unit (DAU)
- 6-channel universal sensor inputs
- 16GB non-volatile flash memory
- Installation near sensors
- Record in place
- Real-time streaming
- Time synchronization

Dimensions mm [in.]

TS

fidential not to be distributed without written concept of

Making Connections


- SLICE6 AIR has two high-density "D" connectors.
 - One for connecting sensors to a highly programable signal conditioning circuit.
 - Another for connecting Power, Control and Communication signals.
 - Extensive sensor connection information is available in the User's Manual and on the DTS Help Center. A brief overview of the Sensor Interface is included here.
- DTS offers many standard system connection cables, however users may want to install a SLICE6 system in a unique application, and therefore desire to make a custom power, communication & control cable system.
- The following is intended to provide sufficient information to help the user make proper system connections.

System Connector

Making Connections

- Power and Control signals can be connected as a parallel bus
- Ethernet signals must be connected as a daisy chain. (i.e. PC to Port1, Port2 to Port1 on next unit, etc.)

Sensor Interface

Excitation

- 5V, 20mA (Bridge/PR)
- 24V, 5mA (IEPE)

Input Range

- 0 to 5 V, 2.5V center (Bridge/PR)
- 0.5 to 23.5 V (IEPE)

Gain

1 to 1,280 software programmed

Bandwidth

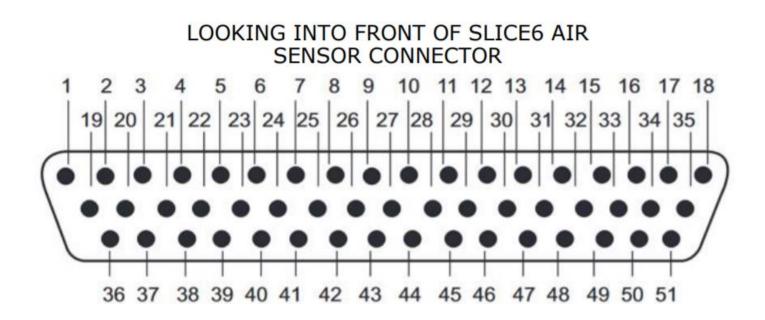
DC to 50 kHz

Anti-Alias Filter

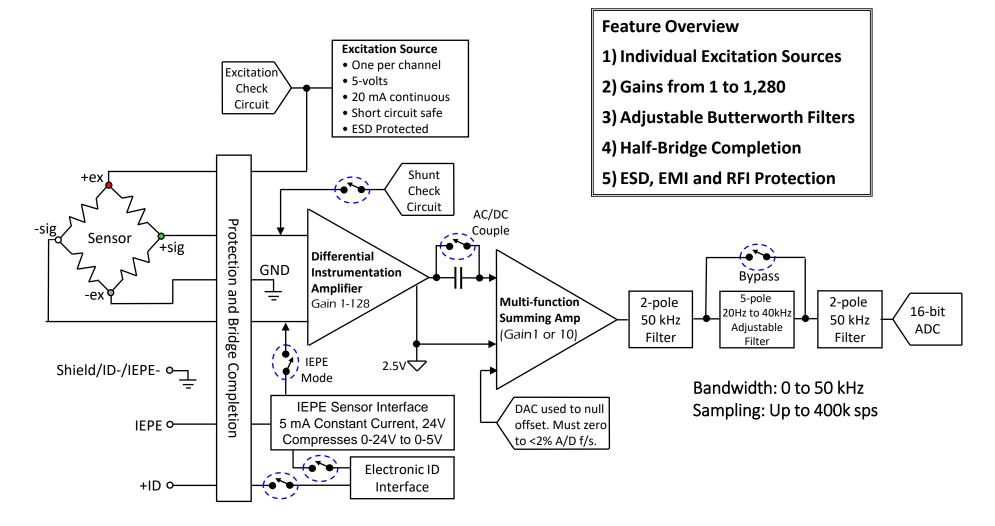
Adjustable 5-pole Butterworth: 20Hz – 40kHz

Analog to Digital Conversion

- Individual 16-bit SAR ADC
- < 10 µsec, via IEEE 1588 PTPv2 or PPS</p>


SENSOR CONNECTOR PIN ASSIGNMENTS

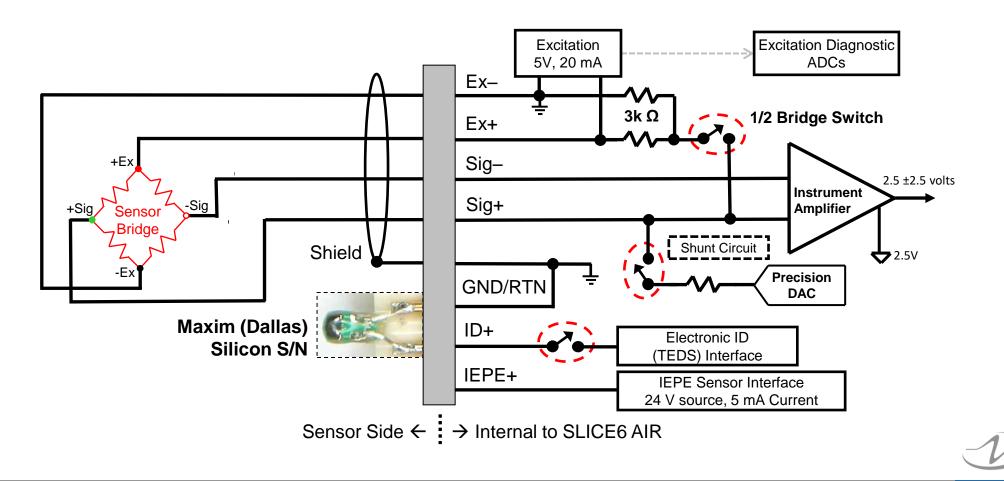
PIN	SIGNAL	26	26 +IEPE_CH3		
1	-SIG_CH1	27	GND/SHIELD		
2	+SIG_CH1	28	+IEPE_CH4		
3	GND/SHIELD	29	-EX_CH4		
4	-SIG_CH2	30	GND/SHIELD		
5	+SIG_CH2	31	+IEPE_CH5		
6	GND/SHIELD	32	-EX_CH5		
7	-SIG_CH3	33	GND/SHIELD		
8	+SIG_CH3	34	+IEPE_CH6		
9	-ID/-IEPE_CH3	35	-EX_CH6		
10	-ID/-IEPE_CH4	36	+EX_CH1		
11	+SIG_CH4	37	+ID_CH1		
12	-SIG_CH4	38	-ID/-IEPE_CH1		
13	GND/SHIELD	39	+EX_CH2		
14	+SIG_CH5	40	+ID_CH2		
15	-SIG_CH5	41	-ID/-IEPE_CH2		
16	GND/SHIELD	42	+EX_CH3		
17	+SIG_CH6	43	+ID_CH3		
18	-SIG_CH6	44	+ID_CH4		
19	-EX_CH1	45	+EX_CH4		
20	+IEPE_CH1	46	-ID/-IEPE_CH5		
21	GND/SHIELD	47	+ID_CH5		
22	-EX_CH2	48	+EX_CH5		
23	+IEPE_CH2	49	-ID/-IEPE_CH6		
24	GND/SHIELD	50	+ID_CH6		
25	-EX_CH3	51	51 +EX_CH6		


Sensor Connector Detail

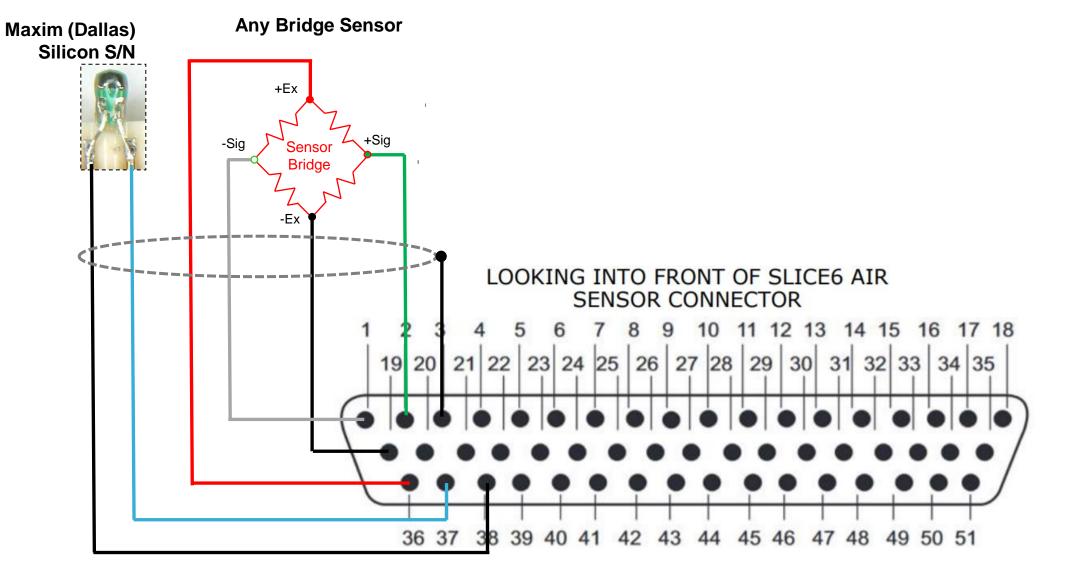
The Sensor Connector has 8 dedicated pins per channel.

+/- Excitation, +/- Signal, +/- IEPE, +/- ID

SLICE6 AIR Sensor Channel Architecture

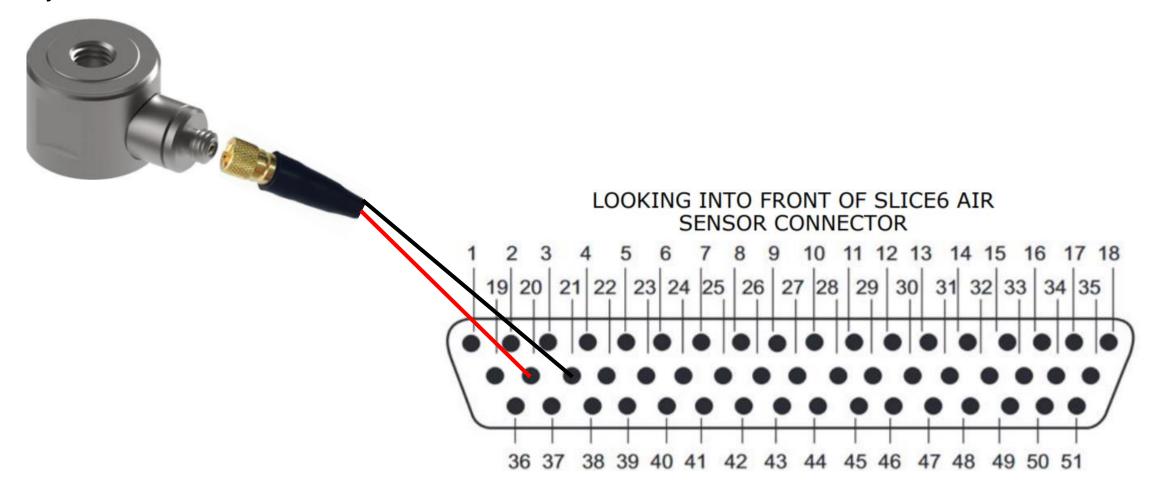


Shield/ID-/ IEPE- •____



SLICE6 AIR Sensor Interface Detail

- +/- Signal are connected to a true Differential Instrumentation Amplifier (IA)
- Common Mode Range of the IA is 0-5 volts with respect to ground and –excitation.
- +/- Signal inputs must both be connected either externally or using ½ bridge completion.
- The maximum signal swing is 0-5 volts or ±2.5 volts (with a 2.5 volt center)



Example Bridge Sensor on Channel 1

Example IEPE Sensor on Channel 1

Any IEPE Sensor

System Connections

Power

- 9 36 VDC
- <3 W consumption</p>

Communication

- Ethernet 10/100 (2-ports per SLICE6 Unit)
- IRIG Chapter 10 PCM Format 1. Available TmNS
- Up to 20 ksps real-time streaming per channel

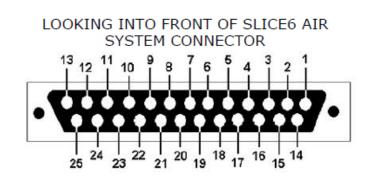
Synchronization Options

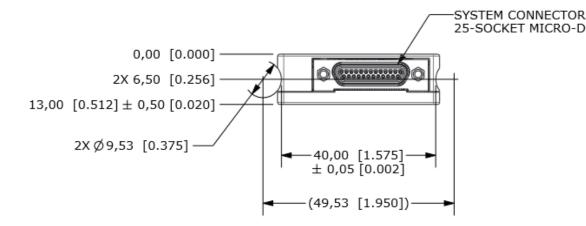
- IEEE 1588 PTPv2
- IRIG B122
- GPS (NMEA Data) + PPS
- PPS Only

Hardware Controls for Onboard Recording

- Remote on/off Control
- Status LED
- Start Record
- Status
- Event
- TTL Compatible

System Connections

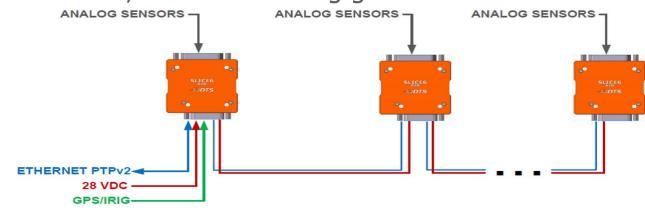

Sensor Connector



System Connector

PIN ASSIGNMENTS						
PIN	SIGNAL					
1	+PWR					
2	+PWR					
3	+PWR					
4	GND					
5	GND					
6	TX_2_P					
7	TX_2_N					
8	RX_2_P					
9	RX_2_N					
10	TX_1_P					
11	TX_1_N					
12	RX_1_P					
13	RX_1_N					
14	#ON					
15	#START					
16	#EVENT					
17	STATUS					
18	UART_RX_P					
19	UART_RX_N					
20	UART_TX_P					
21	UART_TX_N					
22	GND					
23	GND					
24	IRIGB					
25	PPS					

SYSTEM CONNECTOR



SYSTEM CONNECTOR PIN ASSIGNMENTS

PIN	SIGNAL				
1	+PWR	GND - All GNDs are internally common			
2	+PWR	• 9-36V DC, 3W Maximum • GND is connected to the enclosure			
3	+PWR	- I • Reverse current & ESD Protection I I I			
4	GND	GND is connected to negative excitation			
5	GND				
6	TX_2_P	Ethernet – 2 Ports used for daisy chaining			
7	TX_2_N	100M bit/sec (transformer-less)			
8	RX_2_P	IEEE-1588 Switch, PTPv2 Compliant			
9	RX_2_N	Maximum cable length ~10m			
10	TX_1_P	Cable quality may affect maximum length & performance			
11	TX_1_N				
12	RX_1_P	#ON - Pull to GND to turn unit on. (Required current is <1mA)			
13	RX_1_N				
14	#ON	 Open circuit voltage is ≅ +PWR 			
15	#START				
16	#EVENT	#START & #EVENT – Active Low - Pull to GND to activate			
17	STATUS	 Open circuit voltage is 5V (Required current is ≅ 10 mA) 			
18	UART_RX_P				
19	UART_RX_N	STATUS			
20	UART_TX_P	Record Serial Data (RS-232 or RS-422) • Normally low (pulled to GND)			
21	UART_TX_N	Simple ASCII, GPS Date, Time, Position Status "OK" provides ~4.5-volts via a 10K resistor			
22	GND				
23	GND	\square IRIG-B \rightarrow 1k Hz IRIG-B122 (analog waveform or digital)			
24	IRIGB				
25	PPS	PPS – Precision Timing, 0-5V, Input or Output. Possible to use with or without GPS.			

Ethernet Chaining

• When chaining SLICE6 AIR units together for shared Ethernet communications, use the following guide:

SLICE6 AIR #1		SLICE6 AIR #2		SLICE6 AIR #3	
Function	Pin #	Function	Pin #	Function	Pin #
		TX_2_P	6	RX_1_P	12
		TX_2_N	7	RX_1_N	13
		RX_2_P	8	TX_1_P	10
		RX_2_N	9	TX_1_N	11
TX_2_P	6	RX_1_P	12		
TX_2_N	7	RX_1_N	13		
RX_2_P	8	TX_1_P	10		
RX_2_N	9	TX_1_N	11		

THANK YOU

